Selasa, 04 November 2014

IRISAN KERUCUT

Irisan Kerucut

Rumus jarak, jarak titik dengan titik dan jarak titik dengan garis, dapat digunakan untuk menentukan persamaan dari kurva-kurva irisan kerucut. Tetapi sebelum menentukan persamaan-persamaan tersebut, kita akan membahas beberapa keluarga kurva yang dihasikan oleh irisan kerucut. Topi ulang tahun merupakan salah satu contoh kerucut yang dapat dijumpai di sekitar kita. Titik pada kerucut disebut titik puncak dan lembaran kertas yang membentuk sisi kerucut disebut selimut kerucut. Sesuai dengan namanya kurva-kurva dalam keluarga irisan kerucut, dapat dihasilkan dengan mengiris suatu kerucut, atau lebih tepatnya, kurva-kurva tersebut merupakan hasil perpotongan suatu bidang dengan kerucut. Apabila bidang tersebut tidak melalui titik puncak, irisannya akan menghasilkan lingkaran, elips, parabola, dan hiperbola. Perhatikan gambar berikut.
Irisan Kerucut
Masing-masing irisan kerucut tersebut dapat didefinisikan dalam persamaan jarak titik dengan titik, ataupun jarak titik dengan garis. Misalnya, titik-titik (–4, –2), (4, –2), dan (4, 4) merupakan titik-titik yang berada pada lingkaran yang berpusat di (0, 1) dan berjari-jari 5 satuan. Sehingga, definisi lingkaran adalah himpunan semua titik yang memiliki jarak yang sama (yang disebut jari-jari) terhadap suatu titik tertentu (yang disebut titik pusat).
Contoh lainnya, titik-titik (0, 0), (4, 2) dan (8, 8) yang dilalui oleh suatu parabola memiliki jarak yang sama terhadap titik (0, 2) dan garis y = –2. Ilustrasi ini mengarahkan kita ke dalam definisi parabola: parabola adalah himpunan semua titik yang memiliki jarak yang sama terhadap suatu titik tertentu (yang disebut titik fokus) dan suatu garis yang diberikan (yang disebut garis direktris).
Contoh : Menemukan Persamaan Parabola
Tentukan persamaan parabola yang memuat semua titik yang berjarak sama terhadap titik (0, 2) dan garis y = –2.
Parabola
Pembahasan Kita gunakan pasangan berurutan (xy) untuk merepresentasikan sembarang titik pada parabola. Karena semua titik pada garis y = –2 dapat dituliskan ke dalam (x, –2), maka kita dapat menyatakan bahwa jarak titik (xy) terhadap (x, –2) sama dengan jarak (xy) terhadap (0, 2). Dengan menggunakan rumus jarak,
Persamaan Parabola
Sehingga, semua titik yang memenuhi kondisi tersebut adalah semua titik pada parabola dengan persamaan (1/8)x2.
Lalu bagaimana jika jarak titik (xy) terhadap fokus kurang dari jarak (xy) terhadap direktris? Bagaimana jika jarak (xy) terhadap fokus sama dengan 5/6 dari jarak (xy) terhadap direktris. Mungkin kita akan menebak bahwa titik-titik (xy) tersebut akan membentuk kurva dalam keluarga irisan kerucut lainnya. Dalam hal ini, titik tersebut akan membentuk elips. Jika jarak (xy) terhadap fokus lebih dari jarak (xy) terhadap direktris, maka titik-titik tersebut akan membentuk hiperbola. Pada gambar a di bawah, panjang ruas garis dari fokus ke masing-masing titik pada grafik (ditunjukkan oleh ruas garis orange), sama dengan 5/6 dari panjang ruas garis dari direktris dengan titik-titik yang sama. Perhatikan bahwa titik-titik yang memenuhi kondisi seperti itu akan membentuk setengah elips. Pada gambar b, garis-garis dan titik-titik yang membentuk setengah elips digerakkan dengan kondisi yang sama sehingga membentuk suatu grafik elips secara utuh.
Ellipse

SUKU BANYAK

Bentuk Umum:

axn + an – 1 xn – 1 + an – 2 xn – 2 + … + … a2x2 + a1x + a0
n = derajat suku banyak
a0 = konstanta
an, an – 1, an – 2, … = koefisien dari xn, xn – 1, xn – 2, …

Pembagian Suku Banyak

Bentuk Umum
F(x) = P(x).H(x) + S(x)
F(x) = suku banyak
P(x) = pembagi
H(x) = hasil bagi
S(x) = sisa
Teorema Sisa:
Jika suatu suku banyak F(x) dibagi oleh (x – k) maka sisanya adalah F(k)
Jika pembagi berderajat n maka sisanya berderajat n – 1
Jika suku banyak berderajat m dan pembagi berderajat n, maka hasil baginya berderajat m – n
Cara Pembagian Suku Banyak
Contoh:
F(x) = 2x3 – 3x2 + x + 5 dibagi dengan P(x) = 2x2 – x – 1
1. Pembagian biasa

Jadi hasil baginya: H(X) = x – 1, sisanya S(x) = x + 4
2. Cara Horner/Skema
bisa digunakan untuk pembagi berderajat 1 atau pembagi yang dapat difaktorkan menjadi pembagi-pembagi berderajat 1
Cara:

  • Tulis koefisiennya saja → harus runtut dari koefisien xn, xn – 1, … hingga konstanta (jika ada variabel yang tidak ada, maka koefisiennya ditulis 0)
Contoh: untuk 4x3 – 1, koefisien-koefisiennya adalah 4, 0, 0, dan -1 (untuk x3, x2, x, dan konstanta)
  • Jika koefisien derajat tertinggi P(x) ≠ 1, maka hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)
  • Jika pembagi dapat difaktorkan, maka:
Jika pembagi dapat difaktorkan menjadi P1 dan P2, maka S(x) = P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, maka S(x) = P1.P2.S3 + P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka S(x) = P1.P2.P3.S4 + P1.P2.S3 + P1.S2 + S1
dan seterusnya
Untuk soal di atas,
P(x) = 2x2 – x – 1 = (2x + 1)(x – 1)
P1: 2x + 1 = 0 → x = –½
P2: x – 1 = 0 → x = 1
Cara Hornernya:

H(x) = 1.x – 1 = x – 1
S(x) = P1.S2 + S1 = (2x + 1).1/2 + 7/2 = x + ½ + 7/2 = x + 4
3. Cara koefisien tak tentu
F(x) = P(x).H(x) + S(x)
Untuk soal di atas, karena F(x) berderajat 3 dan P(x) berderajat 2, maka
H(x) berderajat 3 – 2 = 1
S(x) berderajat 2 – 1 = 1
Jadi, misalkan H(x) = ax + b dan S(x) = cx + d
Maka:
2x3 – 3x2 + x + 5 = (2x2 – x – 1).(ax + b) + (cx + d)
Ruas kanan:
= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d
= 2ax3 + (2b – a)x2 + (–b – a + c)x + (–b + d)
Samakan koefisien ruas kiri dan ruas kanan:
x3 → 2 = 2a → a = 2/2 = 1
x2 → –3 = 2b – a → 2b = –3 + a = –3 + 1 = –2 → b = –2/2 = –1
x → 1 = –b – a + c → c = 1 + b + a = 1 – 1 + 1 → c = 1
Konstanta → 5 = –b + d → d = 5 + b = 5 – 1 → d = 4
Jadi:
H(x) = ax + b = 1.x – 1 = x – 1
S(x) = cx + d = 1.x + 4 = x + 4

Teorema Faktor

Suatu suku banyak F(x) mempunyai faktor (x – k) jika F(k) = 0 (sisanya jika dibagi dengan (x – k) adalah 0)
Catatan: jika (x – k) adalah faktor dari F(x) maka k dikatakan sebagai akar dari F(x)
Tips:

  1. Untuk mencari akar suatu suku banyak dengan cara Horner, dapat dilakukan dengan mencoba-coba dengan angka dari faktor-faktor konstantanya ang akan memberikan sisa = 0
  2. Jika jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya adalah x = 1
  3. Jika jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya adalah x = –1
Contoh:
Tentukan penyelesaian dari x3 – 2x2 – x + 2 = 0
Faktor-faktor dari konstantanya, yaitu 2,  adalah ±1 dan ±2
Karena jumlah seluruh koefisien + konstantanya = 0 (1 – 2 – 1 + 2 = 0), maka, pasti x = 1 adalah salah satu faktornya, jadi:

Jadi x3 – 2x2 – x + 2 = (x – 1)(x2 – x – 2)
= (x – 1)(x – 2)(x + 1)
x = 1   x = 2   x = –1
Jadi himpunan penyelesaiannya: {–1, 1, 2}

Sifat Akar-Akar Suku Banyak

Pada persamaan berderajat 3:
ax3 + bx2 + cx + d = 0 akan mempunyai akar-akar x1, x2, x3
dengan sifat-sifat:

  • Jumlah 1 akar: x1 + x2 + x3 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x2.x3 = c/a
  • Hasil kali 3 akar: x1.x2.x3 = – d/a
Pada persamaan berderajat 4:
ax4 + bx3 + cx2 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4
dengan sifat-sifat:

  • Jumlah 1 akar: x1 + x2 + x3 + x= – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 = c/a
  • Jumlah 3 akar: x1.x2.x3 + x1.x2.x4 + x2.x3.x4 = – d/a
  • Hasil kali 4 akar: x1.x2.x3.x4 = e/a
Dari kedua persamaan tersebut, kita dapat menurunkan rumus yang sama untuk persamaan berderajat 5 dan seterusnya
(amati pola:  –b/a, c/a, –d/a , e/a, …)

Pembagian Istimewa